Chained Generalisation Bounds

E. Clerico, A. Shidani, G. Deligiannidis, A. Doucet

University of Oxford, Department of Statistics

COLT 2022

Setting

- Loss Function: $\ell: \mathcal{W} \times \mathcal{X} \to \mathbb{R}$
- Learning Algorithm:

$$s = \{x_1, \dots, x_m\} \sim \mathbb{P}_S \mapsto W \sim \mathbb{P}_{W|S=s}$$

- \bullet Population Loss: $\mathscr{L}_{\mathcal{X}}(w) = \mathbb{E}_{\mathbb{P}_X}[\ell(w,X)]$
- Empirical Loss: $\mathscr{L}_s(w) = \frac{1}{m} \sum_{i=1}^m \ell(w, x_i)$
- Generalisation Gap: $g_s(w) = \mathscr{L}_{\mathcal{X}}(w) \mathscr{L}_s(w)$

GOAL: Control the expected generalisation gap $\mathcal{G} = \mathbb{E}_{\mathbb{P}_{W,S}}[g_S(W)]$.

Examples of Generalisation Bounds

Proposition (Standard MI bound - Russo & Zou, 2019)

Let
$$\mathbb{P}_S = \mathbb{P}_X^{\otimes m}$$
. If $\ell(w, X)$ is ξ -SG, $\forall w \in \mathcal{W}$, then $|\mathcal{G}| \leq \xi \sqrt{\frac{2I(W; S)}{m}}$.

Proposition (Standard Wasserstein bound - Lopez & Jog, 2018)

Suppose that $d_{\mathcal{X}}$ and $d_{\mathcal{S}}$ are related by $d_{\mathcal{S}}(s,s')^2 = \sum_{i=1}^m d_{\mathcal{X}}(x_i,x_i')^2$. If, $\forall w \in \mathcal{W}$, $x \mapsto \ell(w,x)$ is ξ -Lipschitz on \mathcal{X} , then $|\mathcal{G}| \leq \frac{\xi}{\sqrt{m}} \mathbb{E}_{\mathbb{P}_W}[\mathfrak{W}(\mathbb{P}_S,\mathbb{P}_{S|W})]$.

- In both bounds uniform (in W) regularity (in X) of the loss.
- $\bullet \ \, \mathsf{Key idea} \colon \, \mathcal{G} = \mathbb{E}_{\mathbb{P}_{W \otimes S}}[\mathscr{L}_S(W)] \mathbb{E}_{\mathbb{P}_{W,S}}[\mathscr{L}_S(W)].$

General framework

Definition (D-regularity)

Let $\mathfrak D$ be a measurable map $\mathscr P \times \mathscr P \to [0,+\infty]$. Fix $\mu \in \mathscr P$ and $\xi \geq 0$. We say that $f: \mathcal Z \to \mathbb R$ has regularity $\mathcal R_{\mathfrak D}(\xi)$, with respect to μ , if $f \in L^1(\mu)$ and, for every $\nu \in \mathscr P$ such that $\operatorname{Supp}(\nu) \subseteq \operatorname{Supp}(\mu)$ and $f \in L^1(\nu)$,

$$|\mathbb{E}_{\mu}[f(Z)] - \mathbb{E}_{\nu}[f(Z)]| \le \xi \,\mathfrak{D}(\mu, \nu) \,.$$

We say that $F: \mathcal{Z} \to \mathbb{R}^q$ has regularity $\mathcal{R}_{\mathfrak{D}}(\xi)$ (wrt μ) if $z \mapsto v \cdot F(w)$ has regularity $\mathcal{R}_{\mathfrak{D}}(\xi||v||)$ (wrt μ), for all $v \in \mathbb{R}^q$.

Theorem (General unchained bound)

Assume that $s \mapsto \mathscr{L}_s(w)$ has regularity $\mathcal{R}_{\mathfrak{D}}(\xi)$ wrt \mathbb{P}_S , $\forall w \in \mathcal{W}$. Then we have

$$|\mathcal{G}| = |\mathbb{E}_{\mathbb{P}_{W \otimes S}}[\mathscr{L}_S(W)] - \mathbb{E}_{\mathbb{P}_{W,S}}[\mathscr{L}_S(W)]| \le \xi \, \mathbb{E}_{\mathbb{P}_W}[\mathfrak{D}(\mathbb{P}_S, \mathbb{P}_{S|W})] \,,$$

where
$$\mathbb{E}_{\mathbb{P}_W}[\mathfrak{D}(\mathbb{P}_S, \mathbb{P}_{S|W})] = \int_{\mathcal{W}} \mathfrak{D}(\mathbb{P}_S, \mathbb{P}_{S|W=w}) \, \mathrm{d}\mathbb{P}_W(w)$$
.

- If f(Z) is ξ -SG for $Z \sim \mu \in \mathscr{P}$: f has regularity $\mathcal{R}_{\mathfrak{D}}(\xi)$ where $\mathfrak{D}: (\mu, \nu) \mapsto \sqrt{2\mathrm{KL}(\nu \| \mu)}$.
- If f is ξ -Lipschitz on \mathcal{Z} : f has regularity $\mathcal{R}_{\mathfrak{D}}(\xi)$ where $\mathfrak{D}: (\mu, \nu) \mapsto \mathfrak{W}(\mu, \nu)$.
- ⇒ unchained MI and Wasserstein bounds!

Chained Bounds

The chained bounds are multiscale generalisation bounds that leverage the dependencies between different hypotheses by mean of the chaining technique.

Definition (ε -Nets)

Given $\varepsilon>0$, we define an ε -projection on $\mathcal W$ as a measurable mapping $\pi:\mathcal W\to\mathcal W$ such that $\pi(\mathcal W)$ has finitely many elements and, for all $w\in\mathcal W$, $\|\pi(w)-w\|\leq \varepsilon$. The image $\pi(\mathcal W)$ is called an ε -net on $\mathcal W$.

Definition (Refining Sequences of Nets)

Consider a positive, vanishing, decreasing sequence $\{\varepsilon_k\}_{n\in\mathbb{N}}$ and assume that $\exists w_0 \in \mathcal{W}$ such that $\|w-w_0\| \leq \varepsilon_0$, $\forall w \in \mathcal{W}$. We call $\{\pi_k(\mathcal{W})\}_{n\in\mathbb{N}}$ an $\{\varepsilon_k\}$ -refining sequence of nets if $\pi_0(\mathcal{W}) = \{w_0\}$ and, for all $k \geq 1$, we have that π_k is a ε_k -projection and $\pi_{k-1} \circ \pi_k = \pi_{k-1}$.

Proposition (CMI bound - Asadi et al., 2018)

Let $\mathbb{P}_S = \mathbb{P}_X^{\otimes m}$ and \mathcal{W} be a compact set, with an $\{\varepsilon_k\}$ -refining sequence of nets $\{\mathcal{W}_k\}$ defined on it. Suppose that $w \mapsto \ell(w,x)$ is continuous, for \mathbb{P}_X -almost every x, and that $\{\ell(w,X)\}_{w \in \mathcal{W}}$ is a ξ -SG stochastic process. Then we have

$$|\mathcal{G}| \le \frac{\xi}{\sqrt{m}} \sum_{k=1}^{\infty} \varepsilon_{k-1} \sqrt{2I(W_k; S)}$$
.

The bounds based on chaining, such as the CMI bound, do not fit naturally in the framework presented so far.

Key idea: The regularity of $x \mapsto \ell(w, x)$ is transferred onto $x \mapsto (\ell(w, x) - \ell(w', x))$.

If ℓ is regular enough we can focus on the gradient $\nabla_w \ell(w,x)$ instead.

Assumptions (♣)

- The set $\mathcal{W} \subset \mathbb{R}^d$ is convex, compact, and with non-empty interior.
- The function $w \mapsto \ell(w,x)$ is of class C^1 on \mathcal{W} , \mathbb{P}_X -a.s.
- $\sup_{\mathcal{W} \times \mathcal{X}} |\ell(w, x)| < +\infty$ and $\sup_{\mathcal{W} \times \mathcal{X}} \|\nabla_w \ell(w, x)\| < +\infty$.

Theorem

Assume \clubsuit and that $s \mapsto \nabla_w \mathscr{L}_s(w)$ has regularity $\mathcal{R}_{\mathfrak{D}}(\xi)$ wrt \mathbb{P}_S , $\forall w \in \mathcal{W}$. Then

$$|\mathcal{G}| = |\mathbb{E}_{\mathbb{P}_{W \otimes S}}[\mathcal{L}_{S}(W)] - \mathbb{E}_{\mathbb{P}_{W,S}}[\mathcal{L}_{S}(W)]| \leq \xi \sum_{k=1}^{\infty} \varepsilon_{k-1} \mathbb{E}_{\mathbb{P}_{W}}[\mathfrak{D}(\mathbb{P}_{S}, \mathbb{P}_{S|W_{k}})],$$

where
$$\mathbb{E}_{\mathbb{P}_W}[\mathfrak{D}(\mathbb{P}_S, \mathbb{P}_{S|W_k})] = \int_{\mathcal{W}} \mathfrak{D}\left(\mathbb{P}_S, \mathbb{P}_{S|W \in \pi_k^{-1}(w)}\right) d\mathbb{P}_W(w)$$
.

Key idea:
$$\mathscr{L}_s(w) = \mathscr{L}_s(w_0) + \sum_{k \geq 1} (\mathscr{L}_s(w_k) - \mathscr{L}_s(w_{k-1}))$$
.

• Recovering the CMI bound:

Proposition (Variant of the CMI bound)

Under \clubsuit , if $\nabla_w \ell(w, X)$ is ξ -SG $\forall w$:

$$|\mathcal{G}| \le \frac{\xi}{\sqrt{m}} \sum_{k=1}^{\infty} \varepsilon_{k-1} \sqrt{2I(W_k; S)}$$
.

Finding new chained bounds:

Proposition (Chained Wasserstein bound)

Under \clubsuit , if $x \mapsto \nabla_w \ell(w, x)$ is ξ -Lipschitz $\forall w$:

$$|\mathcal{G}| \leq \frac{\xi}{\sqrt{m}} \sum_{k=1}^{\infty} \varepsilon_{k-1} \mathbb{E}_{\mathbb{P}_W} [\mathfrak{W}(\mathbb{P}_S, \mathbb{P}_{S|W_k})].$$

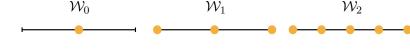
To chain or not to chain?

- The requirements for the chained bounds are somewhat stronger: whenever we derive a chained bound in our framework, we can always state an unchained counterpart.
- However, conditioning on W_k instead of W can often be helpful: $\mathbb{E}_{\mathbb{P}_W}[\mathfrak{D}(\mathbb{P}_S, \mathbb{P}_{S|W_k})] \leq \mathbb{E}_{\mathbb{P}_W}[\mathfrak{D}(\mathbb{P}_S, \mathbb{P}_{S|W})]$ if $\mathfrak{D}(\mathbb{P}_S, \cdot)$ is convex.
- If \mathbb{P}_W is very **concentrated on a tiny region** of \mathcal{W} , S is almost independent of W_k up to a small scale and the chained result tends to be the tightest.

Toy Example

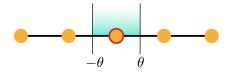
$$\mathcal{W} = [-1, 1] \qquad \mathcal{X} = [-1, 1] \qquad \varepsilon_k = 2^{-k}$$

$$\mathcal{W}_k = \{2^{1-k}j \ : \ j \in [-2^{k-1}:2^{k-1}]\}$$
, where $[a:b] = [a,b] \cap \mathbb{Z}$



$$\theta = 2^{-k^{\star}}$$
 $X \sim \text{Unif}(-\theta, \theta)$ $\ell(w, x) = \frac{1}{2}(w - x)^2$ $\mathbb{P}_{W|X=x} = \delta_x$

$$X \perp \!\!\! \perp W_k$$
 for $k \leq k^*$:



The first k^* terms in the chained sum are null, and $\mathcal{B}_{\text{CWass}}/\mathcal{B}_{\text{Wass}} \leq 2\theta$:

$$\begin{split} \mathcal{B}_{\text{CWass}} &= \sum_{k>0} 2^{1-k} \mathbb{E}_{\mathbb{P}_W}[\mathfrak{W}(\mathbb{P}_X, \mathbb{P}_{X|W_k}] = \sum_{k>k^\star} 2^{1-k} \mathbb{E}_{\mathbb{P}_W}[\mathfrak{W}(\mathbb{P}_X, \mathbb{P}_{X|W_k})] \\ &\leq \sum_{k>k^\star} 2^{1-k} \mathbb{E}_{\mathbb{P}_W}[\mathfrak{W}(\mathbb{P}_X, \mathbb{P}_{X|W})] = 2\theta \mathcal{B}_{\text{Wass}} \,. \end{split}$$

Exact results:

$$\begin{split} |\mathcal{G}| &= \frac{1}{3}\,\theta^2 \simeq 0.33\,\theta^2\,; \qquad \mathcal{B}_{\text{Wass}} = \frac{2}{3}\,\theta \simeq 0.67\,\theta\,; \\ \mathcal{B}_{\text{CWass}} &= \frac{247}{105}\,\theta^2 \simeq 2.35\,\theta^2; \qquad \mathcal{B}_{\text{CMI}} \simeq 3.50\,\theta\,. \end{split}$$

Conclusion

- We introduced a general framework allowing us to derive several generalisation bounds.
- Under suitable regularity conditions we established a duality between chained and unchained generalisation bounds.
- The same technical machinery can apply to broader settings,
 e.g. chained PAC-Bayes bound.