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Loss Function: /: W x X — R
Learning Algorithm:

s:{xl,...,xm}NPsr—)WNPW‘S:s

Population Loss: Zx(w) = Ep, [/(w, X)]
Empirical Loss: .Z,(w) = 2 >, 0(w, z;)

Generalisation Gap: g;(w) = Ly (w) — Zs(w)

GOAL: Control the expected generalisation gap G = Ep,, 4 [g5(W)].
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Examples of Generalisation Bounds

Proposition (Standard Ml bound - Russo & Zou, 2019)

Let Ps = P™. If é(w, X) is £-SG, Yw € W, then |G| < &1/ 2W5S8).

Proposition (Standard Wasserstein bound - Lopez & Jog, 2018)

Suppose that dx and ds are related by ds(s,s')? = > dx(z;, 2))?. If,
Yw € W, x +— l(w,x) is &-Lipschitz on X, then
6] < & Epy, [20(Ps, Psjw)].

@ In both bounds uniform (in W) regularity (in X) of the loss.
o Key idea: G = Epy,s[Ls(W)] — Epy, o [Ls(W)].
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General framework

Definition (D-regularity)

Let © be a measurable map & x & — [0, +o0]. Fix p € & and £ > 0.
We say that f: Z — R has regularity Ro (&), with respect to p, if
f € LY(u) and, for every v € & such that Supp(r) C Supp(u) and
fe L),

[Eu[f(2)] = Eu[f(2)]] < €D (p,v).

We say that F': Z — RY has regularity Rp (&) (wrt p) if z — v - F(w) has

regularity Ro(&||v]|) (wrt u), for all v € RY.

E. Clerico, A. Shidani Chained Generalisation Bounds COLT 2022

4/13



Theorem (General unchained bound)

Assume that s — Zs(w) has regularity Ro(£) wrt Pg, Yw € W. Then we
have

1G] = [Epygs[Zs(W)] = Epy, 5 [Zs(W)]| < EEpyy [D(Ps, Pojw)]

where EPW [@(Ps, PS|W)] = fW @(Ps, IPS|W:w) dIP’W(w)

o If f(Z)is &-SG for Z ~ e 2

f has regularity Ro (&) where © : (u,v) — /2KL(v||p).
o If fis &-Lipschitz on Z:

f has regularity Ro (&) where ® : (u,v) — 20(u, v).

— unchained M| and Wasserstein bounds!
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Chained Bounds

The chained bounds are multiscale generalisation bounds that leverage
the dependencies between different hypotheses by mean of the chaining
technique.

Definition (e-Nets)

Given € > 0, we define an e-projection on VW as a measurable mapping
7 : W — W such that w(W) has finitely many elements and, for all
weW, ||7(w) —w|| <e. The image 7(W) is called an e-net on W.

Definition (Refining Sequences of Nets)

Consider a positive, vanishing, decreasing sequence {ex }nen and assume
that Jwp € W such that |jw — wol| < go, Yw € W. We call {m;(WV)}nen
an {eg }-refining sequence of nets if mo(W) = {wop} and, for all £ > 1, we
have that 7y is a €;-projection and 71 o = T _1.
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Proposition (CMI bound - Asadi et al., 2018)

Let Pg = P_?}m and W be a compact set, with an {ey}-refining sequence
of nets {Wj} defined on it. Suppose that w — {(w,x) is continuous, for
Px-almost every x, and that {{(w, X)}y,ew is a £&-SG stochastic process.

Then we have -
1G] < > en-1V2I(Wy; S) .
k=1

€
vm
The bounds based on chaining, such as the CMI bound, do not fit
naturally in the framework presented so far.

Key idea: The regularity of z — ¢(w, ) is transferred onto
x = (l(w,z) —L(w', x)).

If ¢ is regular enough we can focus on the gradient V,,/(w, x) instead.
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Assumptions (é)

e The set W C R? is convex, compact, and with non-empty interior.
e The function w +— l(w,x) is of class C* on W, Px-a.s.
o supyyyx [l(w,z)| < +00 and supyyy x [[Vuwl(w, )| < +o0.

Theorem

Assume & and that s — V,.Zs(w) has regularity Ro(§) wrt Pg,
Yw € W. Then

| A\

1G] = [Epy g [Ls(W)]—Epy, s[Zs(W)]] < §ka 1Epy, [D(Ps, Psw;, )] »
k=1

where Bz, [D(Ps, Pow, )] = fi0 D (P, Pojwen ) 4Pw (w).

\

Key idea: .Z,(w) = Zu(wo) + Yoy (Zs(wi) — Zilwi1)).
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@ Recovering the CMI bound:

Proposition (Variant of the CMI bound)

Under &, if V,0(w, X) is £-SG Yw:

§ o0
1G] < == er_1V2A(Wy; S) .
T 21

@ Finding new chained bounds:

Proposition (Chained Wasserstein bound)
Under &, if v — V., l(w, ) is &-Lipschitz Yw:

|g‘ S % Zek—lEPW [m(]P)Sv PS|Wk)] .
k=1
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To chain or not to chain?

@ The requirements for the chained bounds are somewhat stronger:
whenever we derive a chained bound in our framework, we can
always state an unchained counterpart.

@ However, conditioning on W, instead of W can often be helpful:
]E]}»W [@ (PS, PS|Wk)] < ]E[[DW [Q(PSJP)S\W)] if @(Ps, ) is convex.

o If Py is very concentrated on a tiny region of W, S is almost
independent of W} up to a small scale and the chained result
tends to be the tightest.
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Toy Example

W=[-1,1 X=[-1,1 ¢ =27F

Wi = {2'7F5 : j e [-2F1: 251}, where [a: b] = [a,b] N Z

WO Wl W2

0 =27% X ~ Unif(—6,0) l(w,z) = & (w — z)? Py x—s = 0z
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The first k* terms in the chained sum are null, and Bcwass/Bwass < 26:

Bowass = 2" Epy [W(Px, Pxyw,] = Y 2" "Ep,, [W(Px, Pxpwy, )]

k>0 K>k
<Y 2" By, [W(Px, Pxjw)] = 20Bwass -
k>k*

Exact results:

1 2
|g|:§9220.3302; BW355:§020.679;

27

05 0% ~ 2.35 6 Bewn ~ 3.500.

BCWass =
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Conclusion

@ We introduced a general framework allowing us to derive several
generalisation bounds.

@ Under suitable regularity conditions we established a duality
between chained and unchained generalisation bounds.

@ The same technical machinery can apply to broader settings,
e.g. chained PAC-Bayes bound.
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