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Setting

Loss Function: ℓ : W ×X → R
Learning Algorithm:

s = {x1, . . . , xm} ∼ PS 7→ W ∼ PW |S=s

Population Loss: LX (w) = EPX
[ℓ(w,X)]

Empirical Loss: Ls(w) =
1
m

∑m
i=1 ℓ(w, xi)

Generalisation Gap: gs(w) = LX (w)− Ls(w)

GOAL: Control the expected generalisation gap G = EPW,S
[gS(W )].
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Examples of Generalisation Bounds

Proposition (Standard MI bound - Russo & Zou, 2019)

Let PS = P⊗m
X . If ℓ(w,X) is ξ-SG, ∀w ∈ W, then |G| ≤ ξ

√
2I(W ;S)

m .

Proposition (Standard Wasserstein bound - Lopez & Jog, 2018)

Suppose that dX and dS are related by dS(s, s
′)2 =

∑m
i=1 dX (xi, x

′
i)
2. If,

∀w ∈ W, x 7→ ℓ(w, x) is ξ-Lipschitz on X , then
|G| ≤ ξ√

m
EPW

[W(PS ,PS|W )].

In both bounds uniform (in W) regularity (in X ) of the loss.

Key idea: G = EPW⊗S
[LS(W )]− EPW,S

[LS(W )].
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General framework

Definition (D-regularity)

Let D be a measurable map P × P → [0,+∞]. Fix µ ∈ P and ξ ≥ 0.
We say that f : Z → R has regularity RD(ξ), with respect to µ, if
f ∈ L1(µ) and, for every ν ∈ P such that Supp(ν) ⊆ Supp(µ) and
f ∈ L1(ν),

|Eµ[f(Z)]− Eν [f(Z)]| ≤ ξD(µ, ν) .

We say that F : Z → Rq has regularity RD(ξ) (wrt µ) if z 7→ v · F (w) has
regularity RD(ξ∥v∥) (wrt µ), for all v ∈ Rq.
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Theorem (General unchained bound)

Assume that s 7→ Ls(w) has regularity RD(ξ) wrt PS , ∀w ∈ W. Then we
have

|G| = |EPW⊗S
[LS(W )]− EPW,S

[LS(W )]| ≤ ξ EPW
[D(PS ,PS|W )] ,

where EPW
[D(PS ,PS|W )] =

∫
W D(PS ,PS|W=w) dPW (w).

If f(Z) is ξ-SG for Z ∼ µ ∈ P:
f has regularity RD(ξ) where D : (µ, ν) 7→

√
2KL(ν∥µ).

If f is ξ-Lipschitz on Z:
f has regularity RD(ξ) where D : (µ, ν) 7→ W(µ, ν).

=⇒ unchained MI and Wasserstein bounds!

E. Clerico, A. Shidani Chained Generalisation Bounds COLT 2022 5 / 13



Chained Bounds

The chained bounds are multiscale generalisation bounds that leverage
the dependencies between different hypotheses by mean of the chaining
technique.

Definition (ε-Nets)

Given ε > 0, we define an ε-projection on W as a measurable mapping
π : W → W such that π(W) has finitely many elements and, for all
w ∈ W, ∥π(w)− w∥ ≤ ε. The image π(W) is called an ε-net on W.

Definition (Refining Sequences of Nets)

Consider a positive, vanishing, decreasing sequence {εk}n∈N and assume
that ∃w0 ∈ W such that ∥w − w0∥ ≤ ε0, ∀w ∈ W. We call {πk(W)}n∈N
an {εk}-refining sequence of nets if π0(W) = {w0} and, for all k ≥ 1, we
have that πk is a εk-projection and πk−1 ◦ πk = πk−1.
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Proposition (CMI bound - Asadi et al., 2018)

Let PS = P⊗m
X and W be a compact set, with an {εk}-refining sequence

of nets {Wk} defined on it. Suppose that w 7→ ℓ(w, x) is continuous, for
PX -almost every x, and that {ℓ(w,X)}w∈W is a ξ-SG stochastic process.
Then we have

|G| ≤ ξ√
m

∞∑
k=1

εk−1

√
2I(Wk;S) .

The bounds based on chaining, such as the CMI bound, do not fit
naturally in the framework presented so far.

Key idea: The regularity of x 7→ ℓ(w, x) is transferred onto
x 7→ (ℓ(w, x)− ℓ(w′, x)).

If ℓ is regular enough we can focus on the gradient ∇wℓ(w, x) instead.
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Assumptions (♣)

• The set W ⊂ Rd is convex, compact, and with non-empty interior.
• The function w 7→ ℓ(w, x) is of class C1 on W, PX -a.s.
• supW×X |ℓ(w, x)| < +∞ and supW×X ∥∇wℓ(w, x)∥ < +∞.

Theorem

Assume ♣ and that s 7→ ∇wLs(w) has regularity RD(ξ) wrt PS ,
∀w ∈ W. Then

|G| = |EPW⊗S
[LS(W )]−EPW,S

[LS(W )]| ≤ ξ

∞∑
k=1

εk−1EPW
[D(PS ,PS|Wk

)] ,

where EPW
[D(PS ,PS|Wk

)] =
∫
W D

(
PS ,PS|W∈π−1

k (w)

)
dPW (w).

Key idea: Ls(w) = Ls(w0) +
∑

k≥1(Ls(wk)− Ls(wk−1)).
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Recovering the CMI bound:

Proposition (Variant of the CMI bound)

Under ♣, if ∇wℓ(w,X) is ξ-SG ∀w:

|G| ≤ ξ√
m

∞∑
k=1

εk−1

√
2I(Wk;S) .

Finding new chained bounds:

Proposition (Chained Wasserstein bound)

Under ♣, if x 7→ ∇wℓ(w, x) is ξ-Lipschitz ∀w:

|G| ≤ ξ√
m

∞∑
k=1

εk−1EPW
[W(PS ,PS|Wk

)] .
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To chain or not to chain?

The requirements for the chained bounds are somewhat stronger:
whenever we derive a chained bound in our framework, we can
always state an unchained counterpart.

However, conditioning on Wk instead of W can often be helpful:
EPW

[D(PS ,PS|Wk
)] ≤ EPW

[D(PS ,PS|W )] if D(PS , ·) is convex.

If PW is very concentrated on a tiny region of W, S is almost
independent of Wk up to a small scale and the chained result
tends to be the tightest.
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Toy Example

W = [−1, 1] X = [−1, 1] εk = 2−k

Wk = {21−kj : j ∈ [−2k−1 : 2k−1]}, where [a : b] = [a, b] ∩ Z

W0 W1 W2

θ = 2−k⋆ X ∼ Unif(−θ, θ) ℓ(w, x) = 1
2(w − x)2 PW |X=x = δx

X ⊥⊥ Wk for k ≤ k⋆:

−θ θ
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The first k⋆ terms in the chained sum are null, and BCWass/BWass ≤ 2θ:

BCWass =
∑
k>0

21−kEPW
[W(PX ,PX|Wk

] =
∑
k>k⋆

21−kEPW
[W(PX ,PX|Wk

)]

≤
∑
k>k⋆

21−kEPW
[W(PX ,PX|W )] = 2θBWass .

Exact results:

|G| = 1

3
θ2 ≃ 0.33 θ2 ; BWass =

2

3
θ ≃ 0.67 θ ;

BCWass =
247

105
θ2 ≃ 2.35 θ2; BCMI ≃ 3.50 θ .
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Conclusion

We introduced a general framework allowing us to derive several
generalisation bounds.

Under suitable regularity conditions we established a duality
between chained and unchained generalisation bounds.

The same technical machinery can apply to broader settings,
e.g. chained PAC-Bayes bound.
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