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Overparameterised model

Overparameterised regime:

Many more parameters than training datapoints

Typical of modern NNs

Generalise “better than expected”

Extremely complex mathematical problem

Limit asymptotic regimes sometimes more “tractable” (e.g. infinite
width)
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Infinite-width limit

For a feedworward network we let tend the number of nodes of each layer
to infinity: infinite width limit

Under suitably scaled iid initialisation:

Gaussian behaviour at initialisation [Neal, 1995]

NTK regime during training [Jacot et al., 2018]

Our paper: Gaussian asymptotics for wide shallow stochastic NN
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Stochastic NN

The trainable parameters are random variables

F (x) = W 1ϕ(W 0x)

W 0 is a n× p matrix: W 0
ij =

1√
n
(s0jkζ

0
jk +m0

jk)

W 1 is a q × n matrix: W 1
jk = 1√

p(s
1
ijζ

1
ij +m1

ij)

All the ζ’s are iid ∼ N (0, 1), m and s are deterministic
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Infinite width limit

Infinite width limit: n → ∞

Informally: ∀x, F (x) → N (M(x), Q(x))

Gaussian behaviour:

At initialisation

Throughout lazy training
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Nota bene

Two sources of randomness

Initialisation P̂,
Intrinsic stochasticity P

In the standard setting infinite witdh limit is Gaussian wrt P̂. It is
deterministic conditioned on P̂.

Here, we will condition on the initialisation drawn from P̂, and find a
Gaussian limit wrt P.
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Hidden layer

Y 0
j (x) =

∑p
k=1W

0
jkxk = 1√

p

∑p
k=1 s

0
jkζ

0
jkxk +

1√
p

∑p
k=1m

0
jkxk

Y 0
j is the sum of finitely many Gaussians...

Y 0(x) ∼ N (M0(x), Q0(x))

M0
j (x) =

1√
p

∑p
k=1m

0
jkxk

Q0
jj′(x) = δjj′

1
p

∑p
k=1(s

0
jkxk)

2
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Output

Fi(x) =
∑n

j=1W
1
ijΦ

0
j (x) =

1√
n

∑n
j=1 s

1
1jζ

1
ijΦ

0
j (x) +

1√
n

∑n
j=1m

1
ijΦ

0
j (x)

with Φ0
j (x) = ϕ(Y 0

j (x))

This is a sum of independent RVs, but not iid!
Need a Lyapunov-like CLT

Mi(x) =
1√
n

∑n
j=1m

1
ijE[Φ0

j (x)]

Qii′(x) = δii′
1
n

∑n
j=1(s

1
ij)

2E[Φ0
j (x)

2] + 1
n

∑n
j=1m

1
ijm

1
i′jV[Φ

0
j (x)]
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CLT

Proposition (CLT, Benktus (2005))

x and n fixed. Z(x) ∼ N (M(x), Q(x)) and C the class of measurable
convex subsets of Rq. Then

sup
C∈C

|P(F (x) ∈ C)− P(Z(x) ∈ C)| ≤ 4q1/4
B(m, s)√

n
.

In particular, if B(m, s) = O(1) for n → ∞, then F (x) → Z(x), in
distribution.
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Initialisation

m0
jk ∼ N (0, 1) ; m1

ij ∼ N (0, 1)

s0jk = 1 ; s1ij = 1

Proposition (Initialisation)

Consider a sequence of networks of increasing width initialised as above,
and whose activation function ϕ is Lipshitz continuous. For any fixed input
x ̸= 0, we have B(m,s)√

n
→ 0, as n → ∞, in probability with respect to the

random initialisation P̂. More precisely, B(m, s) = O(1) wrt P̂, as n → ∞.
In particular, at the initialisation the network tends to a Gaussian limit, in
distribution wrt the intrinsic stochasticity P and in probability wrt P̂.

Proof’s sketch.

Hyper-parameters iid at init. By CLT B upperbounded by a finite limit as
n → ∞.
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Lazy training

Proposition (Lazy training)

Fix a constant J > 0 independent of n, and assume that ϕ is Lipschitz.
Initial configuration (m̃, s̃) drawn according to P̂. BJ the ball

BJ =
{
(m, s) : ∥m− m̃∥2F,2 + ∥s− s̃∥2F,2 ≤ J2

}
.

For any fixed input x ̸= 0 we have B(m, s) = O(1) as n → ∞, uniformly
on BJ , in probability with respect to the random initialisation P̂.

Proof’s sketch.

The proof is technical, but the idea is simple and consists in showing that
B undergoes a change of order O(1) during the training, under the lazy
training assumption (m, s) ∈ BJ . Since we know that B is of order O(1)
at the initialisation, we can conclude.
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Infinite width: summary

F (x) ∼ N (M(x), Q(x))

M(x) and Q(x) computable wrt m, s

Holds for initialisation and lazy training
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PAC-Bayes

Framework for generalisation bounds for stochastic networks.

π, ρ prior and posterior laws on the random parameters

π is data-agnostic

ρ is data-dependent

Idea: if the algorithm does not leak too much information from the data
then it will generalise well. Amount of leaked information here is
represented by how far ρ is from π.

Simple example: for a bounded loss function ℓ ⊆ [0, 1]

Eρ[LX ] ≤ Eρ[LS ] +
1√
m

(
KL(ρ∥π) + log

1

δ
+

1

8

)
with probability at least 1− δ on S.
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PAC-Bayesian training

We can use a PAC-Bayesian bound as training objective for a stochastic
network

Non-vacuous bounds for overparameterised networks

Requires specific stochastic architectures

Need to evaluate Eρ[LS ] and KL(ρ∥π) and their gradients

[Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021]
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Common issues for PAC-Bayesian training

KL(ρ∥π) has a closed form for Gaussian parameters, but Eρ[LS ] is
not know for a general ρ.

Usually output’s law is unknown and Eρ[LS ] needs MC sampling.

Estimating ∇Eρ[LS ] might require surrogate loss .

=⇒ There is a mismatch between the bound and the objective.
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Gaussian PAC-Bayes

For infinite width limit the output is Gaussian at initialisation.

PAC-Bayesian training is lazy when “prior=init”:

∥∆m∥2F,2 + ∥∆s∥2F,2 ≤ 2KL(ρ∥π)

If output’s law is known =⇒ informative gradient with 01-loss.

Eugenio Clerico Wide stochastic networks ALT 2023 16 / 22



Training idea

We can train a shallow wide stochastic network by pretending that it
has a Gaussian output and optimise a PAC-Bayes bound.

Actually it will only be approximately Gaussian, so in order to obtain
an exact bound at the end we will need to take this into account
rigorously.
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Gradient wrt M and Q

Binary classification problem: prediction argmaxi Fi(x).

E[ℓ(f̂(x), 1)] = Pζ∼N (0,1)

(
ζ >

M1(x)−M2(x)√
Q11(x) +Q22(x)− 2Q12(x)

)

This is a differentiable function of M and Q, whose gradient can be
computed explicitly, as P(ζ > u) = 1

2(1− erf(u/
√
2)).
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Gradient wrt m and s

Recall that M and Q contain terms in the form E[Φj(x)] and
E[Φj(x)

2], with Φj(x) = ϕ(Y 0
j (x)).

We have Y 0
j (x) ∼ N (M0

j (x),
√
Q0

jj(x)).

For simple enough ϕ, E[ϕ(aζ + b)] can be computed.

=⇒ ∇m,s can be computed analytically...
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Experimental results
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Conclusion

F (x) → N (M(x), Q(x)) at init and under lazy training

Application: PAC-Bayesian training

Issue: limit cannot be easily extended to multilayer networks

Gaussian PAC-Bayesian training method inspired conditionally
Gaussian method for multilayer architectures [Clerico et al., 2022]

M and Q can be seen as output of deterministic neural network with
complex activations
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Thank you :)
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