Wide stochastic networks: Gaussian limit and PAC-Bayesian training

E. Clerico, G. Deligiannidis, A. Doucet

University of Oxford, Department of Statistics

ALT 2023

Overparameterised model

Overparameterised regime:

- Many more parameters than training datapoints
- Typical of modern NNs
- Generalise "better than expected"
- Extremely complex mathematical problem
- Limit asymptotic regimes sometimes more "tractable" (e.g. infinite width)

Infinite-width limit

For a feedworward network we let tend the number of nodes of each layer to infinity: **infinite width limit**

Under suitably scaled iid initialisation:

- Gaussian behaviour at initialisation [Neal, 1995]
- NTK regime during training [Jacot et al., 2018]

Our paper: Gaussian asymptotics for wide shallow stochastic NN

Stochastic NN

The trainable parameters are random variables

$$F(x) = W^1 \phi(W^0 x)$$

$$\begin{array}{l} W^0 \text{ is a } n \times p \text{ matrix: } W^0_{ij} = \frac{1}{\sqrt{n}} (\mathfrak{s}^0_{jk} \zeta^0_{jk} + \mathfrak{m}^0_{jk}) \\ W^1 \text{ is a } q \times n \text{ matrix: } W^1_{jk} = \frac{1}{\sqrt{p}} (\mathfrak{s}^1_{ij} \zeta^1_{ij} + \mathfrak{m}^1_{ij}) \end{array}$$

All the ζ 's are iid $\sim \mathcal{N}(0,1)$, $\mathfrak m$ and $\mathfrak s$ are $\mathbf{deterministic}$

Eugenio Clerico

Infinite width limit

Infinite width limit: $n \to \infty$

Informally:
$$\forall x, \quad F(x) \to \mathcal{N}(M(x), Q(x))$$

Gaussian behaviour:

- At initialisation
- Throughout lazy training

Nota bene

Two sources of randomness

- Initialisation $\hat{\mathbb{P}}$,
- ullet Intrinsic stochasticity ${\mathbb P}$

In the standard setting infinite witdh limit is Gaussian wrt $\hat{\mathbb{P}}$. It is **deterministic** conditioned on $\hat{\mathbb{P}}$.

Here, we will condition on the initialisation drawn from $\hat{\mathbb{P}}$, and find a Gaussian limit wrt \mathbb{P} .

Hidden layer

$$\begin{split} Y_j^0(x) &= \textstyle\sum_{k=1}^p W_{jk}^0 x_k = \frac{1}{\sqrt{p}} \textstyle\sum_{k=1}^p \mathfrak{s}_{jk}^0 \zeta_{jk}^0 x_k + \frac{1}{\sqrt{p}} \textstyle\sum_{k=1}^p \mathfrak{m}_{jk}^0 x_k} \\ Y_j^0 &\text{ is the sum of finitely many Gaussians...} \\ Y^0(x) &\sim \mathcal{N}(M^0(x), Q^0(x)) \\ M_j^0(x) &= \frac{1}{\sqrt{p}} \textstyle\sum_{k=1}^p \mathfrak{m}_{jk}^0 x_k \end{split}$$

 $Q_{ii'}^{0}(x) = \delta_{ii'} \frac{1}{n} \sum_{k=1}^{p} (\mathfrak{s}_{ik}^{0} x_{k})^{2}$

Eugenio Clerico Wide stochastic networks

Output

$$\begin{array}{c} F_i(x) = \sum_{j=1}^n W^1_{ij} \Phi^0_j(x) = \frac{1}{\sqrt{n}} \sum_{j=1}^n \mathfrak{s}^1_{1j} \zeta^1_{ij} \Phi^0_j(x) + \frac{1}{\sqrt{n}} \sum_{j=1}^n \mathfrak{m}^1_{ij} \Phi^0_j(x) \\ \text{with } \Phi^0_j(x) = \phi(Y^0_j(x)) \end{array}$$

This is a sum of **independent** RVs, but not iid! Need a *Lyapunov-like* CLT

$$M_{i}(x) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \mathfrak{m}_{ij}^{1} \mathbb{E}[\Phi_{j}^{0}(x)]$$

$$Q_{ii'}(x) = \delta_{ii'} \frac{1}{n} \sum_{j=1}^{n} (\mathfrak{s}_{ij}^{1})^{2} \mathbb{E}[\Phi_{j}^{0}(x)^{2}] + \frac{1}{n} \sum_{j=1}^{n} \mathfrak{m}_{ij}^{1} \mathfrak{m}_{i'j}^{1} \mathbb{V}[\Phi_{j}^{0}(x)]$$

CLT

Proposition (CLT, Benktus (2005))

x and n fixed. $Z(x) \sim \mathcal{N}(M(x),Q(x))$ and \mathcal{C} the class of measurable convex subsets of \mathbb{R}^q . Then

$$\sup_{C \in \mathcal{C}} |\mathbb{P}(F(x) \in C) - \mathbb{P}(Z(x) \in C)| \le 4q^{1/4} \frac{B(\mathfrak{m}, \mathfrak{s})}{\sqrt{n}}.$$

In particular, if $B(\mathfrak{m},\mathfrak{s})=O(1)$ for $n\to\infty$, then $F(x)\to Z(x)$, in distribution.

Eugenio Clerico Wide stochastic networks ALT 2023

Initialisation

$$\begin{split} \mathfrak{m}_{jk}^0 &\sim \mathcal{N}(0,1) \,; & \qquad \quad \mathfrak{m}_{ij}^1 &\sim \mathcal{N}(0,1) \\ \mathfrak{s}_{jk}^0 &= 1 \,; & \qquad \quad \mathfrak{s}_{ij}^1 &= 1 \end{split}$$

Proposition (Initialisation)

Consider a sequence of networks of increasing width initialised as above, and whose activation function ϕ is Lipshitz continuous. For any fixed input $x \neq 0$, we have $\frac{B(\mathfrak{m},\mathfrak{s})}{\sqrt{n}} \to 0$, as $n \to \infty$, in probability with respect to the random initialisation $\hat{\mathbb{P}}$. More precisely, $B(\mathfrak{m},\mathfrak{s}) = O(1)$ wrt $\hat{\mathbb{P}}$, as $n \to \infty$. In particular, at the initialisation the network tends to a Gaussian limit, in distribution wrt the intrinsic stochasticity \mathbb{P} and in probability wrt $\hat{\mathbb{P}}$.

Proof's sketch.

Hyper-parameters iid at init. By CLT B upperbounded by a finite limit as $n \to \infty$.

10/22

Lazy training

Proposition (Lazy training)

Fix a constant J>0 independent of n, and assume that ϕ is Lipschitz. Initial configuration $(\widetilde{\mathfrak{m}},\widetilde{\mathfrak{s}})$ drawn according to $\widehat{\mathbb{P}}$. \mathcal{B}_J the ball

$$\mathcal{B}_J = \left\{ (\mathfrak{m}, \mathfrak{s}) : \|\mathfrak{m} - \widetilde{\mathfrak{m}}\|_{F,2}^2 + \|\mathfrak{s} - \widetilde{\mathfrak{s}}\|_{F,2}^2 \le J^2 \right\}.$$

For any fixed input $x \neq 0$ we have $B(\mathfrak{m}, \mathfrak{s}) = O(1)$ as $n \to \infty$, uniformly on \mathcal{B}_J , in probability with respect to the random initialisation $\hat{\mathbb{P}}$.

Proof's sketch.

The proof is technical, but the idea is simple and consists in showing that B undergoes a change of order O(1) during the training, under the lazy training assumption $(\mathfrak{m},\mathfrak{s})\in\mathcal{B}_J$. Since we know that B is of order O(1) at the initialisation, we can conclude.

Infinite width: summary

- $F(x) \sim \mathcal{N}(M(x), Q(x))$
- ullet M(x) and Q(x) computable wrt ${\mathfrak m},\,{\mathfrak s}$
- Holds for initialisation and lazy training

Eugenio Clerico Wide stochastic networks ALT 2023

PAC-Bayes

Framework for generalisation bounds for stochastic networks.

- \bullet π , ρ prior and posterior laws on the random parameters
- π is data-agnostic
- \bullet ρ is data-dependent

Idea: if the algorithm does not leak too much information from the data then it will generalise well. Amount of *leaked information* here is represented by how far ρ is from π .

Simple example: for a bounded loss function $\ell\subseteq[0,1]$

$$\mathbb{E}_{\rho}[\mathscr{L}_X] \leq \mathbb{E}_{\rho}[\mathscr{L}_S] + \frac{1}{\sqrt{m}} \left(\mathrm{KL}(\rho \| \pi) + \log \frac{1}{\delta} + \frac{1}{8} \right)$$

with probability at least $1 - \delta$ on S.

PAC-Bayesian training

We can use a PAC-Bayesian bound as training objective for a **stochastic network**

- Non-vacuous bounds for overparameterised networks
- Requires specific stochastic architectures
- ullet Need to evaluate $\mathbb{E}_{
 ho}[\mathscr{L}_S]$ and $\mathrm{KL}(
 ho\|\pi)$ and their gradients

[Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021]

Common issues for PAC-Bayesian training

- $\mathrm{KL}(\rho \| \pi)$ has a closed form for Gaussian parameters, but $\mathbb{E}_{\rho}[\mathscr{L}_S]$ is not know for a general ρ .
- ullet Usually output's law is unknown and $\mathbb{E}_{
 ho}[\mathscr{L}_S]$ needs MC sampling.
- ullet Estimating $abla \mathbb{E}_{
 ho}[\mathscr{L}_S]$ might require surrogate loss .
- ⇒ There is a **mismatch** between the bound and the objective.

Gaussian PAC-Bayes

- For infinite width limit the output is Gaussian at initialisation.
- PAC-Bayesian training is lazy when "prior=init":

$$\|\Delta\mathfrak{m}\|_{F,2}^2+\|\Delta\mathfrak{s}\|_{F,2}^2\leq 2\mathrm{KL}(\rho\|\pi)$$

If output's law is known \implies informative gradient with 01-loss.

Training idea

- We can train a shallow wide stochastic network by pretending that it has a Gaussian output and optimise a PAC-Bayes bound.
- Actually it will only be approximately Gaussian, so in order to obtain an exact bound at the end we will need to take this into account rigorously.

Gradient wrt M and Q

Binary classification problem: prediction $\operatorname{argmax}_i F_i(x)$.

$$\mathbb{E}[\ell(\hat{f}(x), 1)] = \mathbb{P}_{\zeta \sim \mathcal{N}(0, 1)} \left(\zeta > \frac{M_1(x) - M_2(x)}{\sqrt{Q_{11}(x) + Q_{22}(x) - 2Q_{12}(x)}} \right)$$

This is a differentiable function of M and Q, whose gradient can be computed explicitly, as $\mathbb{P}(\zeta>u)=\frac{1}{2}(1-\mathrm{erf}(u/\sqrt{2})).$

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

Gradient wrt \mathfrak{m} and \mathfrak{s}

- Recall that M and Q contain terms in the form $\mathbb{E}[\Phi_j(x)]$ and $\mathbb{E}[\Phi_j(x)^2]$, with $\Phi_j(x) = \phi(Y_i^0(x))$.
- \bullet We have $Y_j^0(x) \sim \mathcal{N}(M_j^0(x), \sqrt{Q_{jj}^0(x)}).$
- For simple enough ϕ , $\mathbb{E}[\phi(a\zeta+b)]$ can be computed.

 $\implies \nabla_{\mathfrak{m},\mathfrak{s}}$ can be computed analytically...

Experimental results

Table 1: Binary MNIST

Method	Bound	Test error	G Bound	G Loss	Penalty
invkl	.1773	$.0694_{\pm .0040}$.1741	.0676	.0492
McAll	.1978	.0456 _{±.0025}	.1947	.0428	.1006
lbd	.1856	$.0543_{\pm .0030}$.1825	.0520	.0752
quad	.1855	$.0533_{\pm .0030}$.1823	.0515	.0757

Table 2: MNIST

Method	Bound	Test Error	G Bound	G Loss	Penalty
invkl	.2807	$.1083_{\pm .0039}$.2773	.1114	.0821
McAll	.4158	.3189 _{±.0097}	.4120	.3265	.0155
lbd	.3736	$.2639_{\pm .0085}$.3699	.2717	.0216
quad	.3735	$.2637_{\pm .0083}$.3698	.2716	.0217

Conclusion

- $F(x) \to \mathcal{N}(M(x), Q(x))$ at init and under lazy training
- Application: PAC-Bayesian training
- Issue: limit cannot be easily extended to multilayer networks
- Gaussian PAC-Bayesian training method inspired conditionally Gaussian method for multilayer architectures [Clerico et al., 2022]
- ullet M and Q can be seen as output of deterministic neural network with complex activations

Thank you:)